
1/29

Hybrid and Parallel Algorithms for SAT and MILP

Shaowei Cai

Institute of Software, Chinese Academy of Sciences

2025.3.15

The 1st Workshop on Symmetric-key Cryptanalysis Automation and Modelling (SKCAM 2025)

Fast Software Encryption (FSE) 2025 conference

2/29

• Brief Introduction to SAT

• Hybrid SAT Algorithm

• Parallel SAT and MILP Algorithms

Outline

3/29

Constraint Solvers in Symmetric-key Crypt-analysis

SAT: Boolean Satisfiability

(A ∨ B) ∧ (¬C ∨ ¬B) ∧ (¬C ∨ A)

MILP: (Mixed) Integer Linear Programming

Min z=30x+40y

S.t. 2x+3y≤100

x+2y≤150

x≥0 y≥0 x,y∈Z

SMT: Satisfiability Modulo Theories

(2^b = c) ∧ (A[3] ≠ A[c-b] ∨ s =10)

CP: Constraint Programming

𝐴𝑙𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑥𝑖, 𝑥𝑗 ∧ 𝑥𝑖 − 𝑥𝑗 ≠ |𝑖 − 𝑗|

Also: Pseudo Boolean Optimization (PBO)

4/29

• Boolean variables: 𝑥1, 𝑥2, …

• A literal is a Boolean variable 𝑥 (positive literal) or its negation ¬𝑥 (negative literal)

• A clause is a disjunction (∨) of literals

𝑥2 ∨ 𝑥3,

¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4

• A Conjunctive Normal Form (CNF) formula is a conjunction (∧) of clauses.

e.g., 𝜑 = (𝑥1∨ ¬𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ ¬𝑥4) ∧ (¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4)

SAT

Definition [Boolean Satisfiability]

Given a Boolean formula φ, test whether there is an assignment to the variables

that makes φ true.

5/29

conflict-driven clause learning (CDCL) local search

Two Methods for Solving SAT

6/29

• 1960-1990

• DP, DPLL(1962)

• Resolution: Stålmarck’s Method (1989)

• 1990-2010

• Local Search (1992): GSAT (1992), WalkSAT (1994)

• CDCL(1996): GRASP(1999), Chaff(2000), MiniSAT (2003), Glucose (2009), Cryptominisat
(2009)

• Portfolio: SATzilla (2007)

• 2010~today

• Modern local search: probSAT(2012), CCAnr(2013)

• Advanced clause management (2009,2015) and simplification

• Solver engineering: CadiCal, Kissat(2019)

• Hybridizing CDCL and local search (2020)

• Efficient parallel solving

A Simple History of SAT Solvers

7/29

CDCL Algorithm Overview

CDCL solver

• Decide : Branching strategy and phasing strategy

• Analyze : (non-chronological) backtrack + clause learning

• Clause learning

• Clause management

• Lazy data structures

• Restarting

• Branching

• Phasing

• Mode Switching

• …

8/29

Conflict Driven Clause Learning

9/29

Conflict Driven Clause Learning

learn a clause ℎ ∨ 𝑒

∧ (ℎ ∨ 𝑒)

10/29

Local Search

F={¬𝑥1 ∨ ¬𝑥2, 𝑥1 ∨ 𝑥2, ¬𝑥2 ∨ ¬𝑥3, 𝑥2∨ 𝑥3, ¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥3}

Assignment
(𝑥1, 𝑥2, 𝑥3)

Cost falsified Clauses

0 0 0 2 𝑥1 ∨ 𝑥2 , (𝑥2 ∨ 𝑥3)

0 0 1 1 𝑥1 ∨ 𝑥2

0 1 0 0 None √

0 1 1 1 (¬𝑥2 ∨ ¬𝑥3)

1 0 0 1 (𝑥2 ∨ 𝑥3)

1 0 1 1 (¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥3)

1 1 0 1 (¬𝑥1 ∨ ¬𝑥2)

1 1 1 2 ¬𝑥1 ∨ ¬𝑥2 , (¬𝑥2 ∨ ¬𝑥3)

000

100 101

011010

001

110
111

Search space:

all complete assignments

a CNF with 3 variables

Organized by neighboring relation

 Local search walks in the search space,

trying to visit a satisfying assignment

--- incomplete, cannot prove unsatisfiability.

11/29

• Brief Introduction to SAT

• Hybrid SAT Algorithm

• Parallel SAT and MILP Algorithms

Outline

12/29

Challenge of Combining CDCL and Local Search

Challenge 7: Demonstrate the successful combination of stochastic search and
systematic search techniques, by the creation of a new algorithm that outperforms
the best previous examples of both approaches.

[Bart Selman, Henry Kautz and David McAllester, AAAI 1997]

13/29

• Local search as main body

• hybridGM （SAT 2009）, SATHYS （LPAR 2010）

• GapSAT: use CDCL as preprocessor before local search (SAT 2020)

• Use resolution in local search (AAAI 1996, AAAI 2005)

• DPLL/CDCL as main body

• HINOTOS: local search finds subformulas for CDCL to solve (SAT 2008)

• WalkSatz: calls WalkSAT at each node of a DPLL solver Satz (CP 2002)

• CaDiCaL and Kissat: a local search solver is called when the solver resets the saved phases and is

used immediately after the local search process (2019)

• Sequential portfolio

• Sparrow2Riss, CCAnr+glucose, SGSeq

Challenge of Combining CDCL and Local Search

14/29

Deep Cooperation of CDCL and Local Search

CDCL focuses on a local space in a certain period

→Better to integrate reasoning techniques

Local search walks in the whole search space

→Better at sampling

→use it as a sampler instead of solver!

15/29

Deep Cooperation of CDCL and Local Search

[Cai,Zhang, SAT ’21]

Relaxed CDCL:
Plug LS into a CDCL solver

Call local search in promising

branches

Gather useful information

- local optimum

- frequency in unsatified clauses

A history of this work and similar

works independently by Biere

[Cai,Zhang,Fleury,Biere,JAIR ’22]

16/29

Enhance branching heuristic with conflict frequency in local search:

• calculate the conflict frequency: frequency of occurring in unsatisfied clauses

• Normalization: 𝑙𝑠𝑐𝑜𝑛𝑓𝑙𝑛𝑢𝑚 x

• for each variable 𝑥, its activity is increased by 𝑙𝑠_𝑐𝑜𝑛𝑓𝑙_𝑛𝑢𝑚(𝑥)

Improve Branching Heuristics via Local Search

CDCL solvers prefer the variable which may cause conflicts faster (e.g. VSIDS)

17/29

Local Search Rephasing

Local search rephasing

• After each restart of CDCL, reset the saved phases of all variables with assignments by local
search.

Phase selection (assign the picked variable with True or False?) is important for CDCL.
Most modern CDCL solvers utilize the phase saving heuristic [PipatsrisawatDarwiche, SAT’07]

𝛼_𝑙𝑜𝑛𝑔𝑒𝑠𝑡_𝐿𝑆 ∶ the assignment of the local search procedure in which the initial solution is

extended from the longest branch during past CDCL search.

𝛼_𝑏𝑒𝑠𝑡_𝐿𝑆: the assignment with smallest cost among all local search procedures.

𝛼_𝑙𝑎𝑡𝑒𝑠𝑡_𝐿𝑆: the assignment of the latest local search procedure.

(the assignment of a local search procedure is the best found assignment)

Phase Name α_longest_LS α_latest_LS α_best_LS no change

Probability 20% 65% 5% 10%

18/29

The hybrid method or similar ideas widely used in

winners of main track in SAT Competitions since 2020

Deep Cooperation of CDCL and Local Search

20 51

9 24

21 62

9 67

3 17

5 10

#SAT_bonus: solved by hybrid solver, but

both original CDCL and LS fail.
Apply the idea to CDCL-based SAT solvers

19/29

• Brief Introduction to SAT

• Hybrid SAT Algorithm

• Parallel SAT and MILP Algorithms

Outline

20/29

Partition

Divide the search space into smaller sub-spaces and solve them separately.

• Cube and Conquer

• The key is to choose the variable to partition

• measurement: result in a large reduction of the formula.

• Use incremental SAT solver

21/29

Portfolio

Parallelly Run different SAT solvers

（could be one solver with different configurations）

• Key: Highly complementary solvers/configurations.

22/29

Portfolio

Parallelly Run different SAT solvers

（could be one solver with different configurations）

• Key: Highly complementary solvers/configurations.

• Random shuffle: For each thread, randomly shuffles the order in which

variables enter the heap.

Large variation of run time

among different branching orders

23/29

Improve Portfolio: Clause Sharing

• Why Clause Sharing

• Multiple solvers work independently → Explore the same search space

redundantly

• Key idea: Share learnt clauses to avoid redundant work

SAT Solver

Filter Reciever

Cluase Sharer

SAT Solver

Filter Reciever

SAT Solver

Filter Reciever

……

24/29

PRS: A State-of-the-art Parallel SAT Solver

• Comprehensive framework that supports preprocessing, dynamic clause sharing, reproducible parallel SAT

solving, and parallel UNSAT proof generating.

• Portfolio: Random Shuffle, Diversification, Clause Sharing

• Winner of parallel tracks in SAT competitions 2022 and 2023, and used in winner of 2024.

25/29

Parallel MILP by Partitioning

26/29

• Establish new records for 21 challenging MILP instances on MIPLIB benchmark.

• Close an open instance “shiftreg5-1” by proving the optimality

Parallel MILP by Partitioning

instance variable number constraint number previous ours

dlr1 9142907 1735470 2708148.96 2708064.137

s82 1690631 87878 -33.78523765 -33.79705762

bmocbd3 403771 152791 -372986719.7 -373286017.2

neos-5151569-mologa 108116 45671 686759699 686750731.3

neos-4232544-orira 87060 180600 5557371.4 5553207.125

dws012-02 51108 26382 122074.2014 121112.0559

shiftreg5-1 48736 31424 522.1155 520.2562365

polygonpack5-15 48163 163429 -55494653.84 -55494686.56

sct5 37265 13304 -228.1172304 -228.1194928

neos-4230265-orari 32980 76374 81765.21022 73755

neos-4292145-piako 32950 75834 29160.50026 28122.49998

adult-regularized 32674 32709 7022.953543 7022.953543

cmflsp40-36-2-10 28152 4266 66452235.08 66452234.49

gmut-76-40 24338 2586 -14169441.78 -14169460.97

supportcase23 24275 40502 -12160.65936 -12160.65936

polygonpack4-7 10788 34529 -51837707.95 -51837712.98

neos-5045105-creuse 3848 252 20.5714291 20.57141059

eva1aprime6x6opt 3514 34872 -16.31528288 -18.10099528

dfn-bwin-DBE 3285 235 73623.79 73623.78816

gsvm2rl11 2001 1500 18121.638 18121.63764

gsvm2rl9 801 600 7438.181168 7438.181021

27/29

Future Directions

Specific constraint solvers, are (much) better than general solvers.

Exploit the feature

- What are the major operations?

- Are there some variables more important than others?

Configure the solver

- Tune the parameters, auto-tuning

- Choose the good combination of the strategies

- Automatically optimize the solver by LLM (see AutoSAT on Arxiv)

Use computing resource: Parallel and distributed solvers

(seek for a scaling method)

28/29

Suggestions

To improve the power of SAT and MILP solvers for Symmetric-key

Cryptanalysis?

- Submit your benchmarks to SAT/PB/SMT competitions and MIPLIB website

- Make more benchmarks available, maintain a library

- Bring people from two communities together

- Go to the constraint solving community to introduce the problems

29/29

Thank you!

Welcome to visit us:

Beijing, China

http://solver.ios.ac.cn/en/

caisw@ios.ac.cn

	默认节
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

