

Distributed SMT Solving Based on Dynamic Variable-level Partitioning

Mengyu Zhao, Shaowei Cai*, and Yuhang Qian

Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

{zhaomy, caisw, qianyh}@ios.ac.cn

* Corresponding author

Introduction

- Dynamic Variable-level Partitioning
- Experiments & Summary

Propositional Satisfiablity (SAT)

<u>Propositional Satisfiability (SAT)</u>: Given a propositional formula φ , test whether there is an assignment to the variables that makes φ true.

e.g., a CNF formula:

$$\varphi = (x_1 \vee \neg x_2) \land (x_2 \vee x_3) \land (x_2 \vee \neg x_4) \land (\neg x_1 \vee \neg x_3 \vee x_4)$$

- The first NP-Complete problem [Cook, STOC'71]
- A core problem in computer science and a basic problem in logic

Solve a Math Problem with Arithmetic Constraints

x > 1 x < 4 xy > 4 $yz^{2} \le 4$ $2xz + y^{2} < -20$

- Linear system
 - Simplex
 - Branch and Bound
 - Non-linear system:
 - Cylindrical Algebraic Decomposition
 - Interval Constraint Propagation

Satisfiablity Module Theories (SMT)

Boolean Skeleton of SMT Formulas

SMT:

$$(\neg a \lor x < -2) \land (y > 0 \lor x^2z + y = 3) \land (a \lor x^2 \ge 4 \lor y > 5)$$

Boolean Skeleton:

 $(\neg a \lor b) \land (c \lor d) \land (a \lor e \lor f)$

Theory Level:

b:
$$x < -2$$
 c: $y > 0$
d: $x^2z + y = 3$
e: $x^2 \ge 4$ f: $y > 5$

Satisfiablity Module Theories (SMT)

Program Verification

Security Applications

Neural Network Verification

SMT Solvers and Solving Paradigms

SMT Solvers: Solvir

OpenSMT2

Yices2

Solving Paradigms:

- CDCL(T)
- MCSAT

- Bit-blasting
- Local Search

Distributed SMT Solving

- Portfolio
 - Diversification
 - Clause sharing
- Partitioning
 - Cube and conquer
 - Scattering

[Wintersteiger, CAV'09]

[Heule, HVC'12]

OpenSMT2 Team: [Hyvärinen, SAT'16, FMCAD'21] [Marescotti, LPAR'22]

> **CVC5 Team:** [Wilson, FMCAD'23]

Distributed SMT Solving

OpenSMT2 implements a dynamic partitioning method. [Marescotti, LPAR'22]

- partitions the instance dynamically on-demand
- shares learnt clauses

- Introduction
- Dynamic Variable-level Partitioning
- Experiments & Summary

Motivation of Dynamic Variable-level Partitioning

• Term-level partitioning doesn't work all the time. Pure-conjunction formulas can not be partitioned at term-level.

$$(x^{2} + y^{2} \le 5) \land (2xy > 3) \land (x > -2) \land (y < 9)$$

- Many deep simplification technologies has not been well integrated with SMT to accelerate solving.
- Need a more flexible dynamic partitioning strategy.

Partitioner: variable-level partitioning, sub-problems generation, and constraint propagation

Master: task assignments, on-demand terminations, and UNSAT propagations

Workers: task solving and result notification

Dynamic Variable-level Partitioning Key Ideas

- Variable-level partitioning
- Enhanced propagation and simplification
- Dynamic distributed framework

Partitioner: variable-level partitioning, sub-problems generation, and constraint propagation

Master: task assignments, on-demand terminations, and UNSAT propagations

Worker: task solving and result notification

Based on the "**subpaving**" module of Z3

How does arithmetic variable-level partitioning work

Heuristic in Partition Node Selection

How does arithmetic variable-level partitioning work

Heuristic in Partition Variable Selection

How does arithmetic variable-level partitioning work

Heuristic in Partitioning at the Selected Variable

Simplify Formulas via Interval Constraint Propagation (ICP)

It maintains a **feasible interval** for each variable and shrinks these intervals using simple constraint propagation.

ICP has been successfully implemented in various SMT solvers such as dReal, HySAT, and SMT-RAT.

- Shrink variables' bounds
- Effectively **exclude** extensive portions of **the search space**
- Sometimes proving unsatisfiability

[Gao, FMCAD'10] [Schupp, Thesis'13]

Simplify Formulas via Interval Constraint Propagation (ICP)

 \Rightarrow Derive $y \in (1, \infty)$ from $x \in (1, 4) \land xy > 4$

 \Rightarrow Derive $z \in (-2, 2)$ from $y \in (1, \infty) \land yz^2 \leq 4$

Simplify Formulas via Interval Constraint Propagation (ICP)

 \Rightarrow Derive $y \in (1, \infty)$ from $x \in (1, 4) \land xy > 4$

 \Rightarrow Derive $z \in (-2, 2)$ from $y \in (1, \infty) \land yz^2 \leq 4$

⇒ By interval arithmetic, we can obtain: $2xz + y^2 = 2 \times (1,4) \times (-2,2) + (1,\infty)^2$ $\in (-15,\infty)$

 $2xz + y^2 < -20$ cannot be satisfied, when the above 4 constraints are satisfied.

Unsatisfiable!

x > 1 x < 4 xy > 4 $yz^{2} \le 4$ $2xz + y^{2} < -20$

Enhance ICP with BCP

Interval Constraint Propagation (ICP)

x > 1x < 4 $\neg a \lor x < -2$ $a \lor xy > 4$ $a \lor y > 5$ $2xz + y^2 < -20$

Enhance ICP with BCP

Interval Constraint Propagation (ICP)

x > 1 x < 4 $\neg a \lor x < -2$ $a \lor xy > 4$ $a \lor y > 5$ $2xz + y^{2} < -20$

We cannot simplify this formula by ICP. **Boolean Constraint Propagation (BCP)** the unassigned literal in **unit clause** can only be assigned to single value to satisfy the clause.

Enhanced with BCPx > 1Simplifx < 4Simplif $\neg a \lor x < -2$ formula $a \lor xy > 4$ and press $a \lor y > 5$ unsatis $2xz + y^2 < -20$ directly

Simplify this formula a lot, and prove unsatisfiable directly by ICP.

Combining ICP with BCP

BICP and Formula Simplification

\Rightarrow Derive $x \in (1, 4), y \in (1, \infty), z \in (-2, 2)$ by ICP
\Rightarrow Infer (x < -2) \mapsto False and propagate $\neg a$ by BCP

BICP and Formula Simplification

	\Rightarrow Derive $x \in (1, 4), y \in (1, \infty), z \in (-2, 2)$ by ICP
x > 1	⇒ Infer (x < -2) \mapsto False and propagate $\neg a$ by BCP
<i>x</i> < 4	\Rightarrow Check the status of literals in the given formulas
xy > 4	$(xy > 4 \land yz^2 \le 4) \mapsto (\text{True} \land \text{True}),$
$yz^2 \le 4$	$(\neg a \lor x < -2) \mapsto (\text{True} \lor \text{False}),$
	$(y > 0 \lor x^2 z + y = 3) \mapsto (\text{True} \lor \text{Unknown}),$
$\neg a \lor x < -2$	$(a \lor x^2 \ge 4 \lor y > 5) \mapsto (\text{False} \lor \text{Unknown} \lor \text{Unknown}).$
$y > 0 \lor x^2 z + y = 3$	
$a \lor x^2 \ge 4 \lor y > 5$	

BICP and Formula Simplification

	\Rightarrow Derive $x \in (1,4)$, $y \in (1,\infty)$, $z \in (-2,2)$ by ICP
x > 1	⇒ Infer (x < -2) \mapsto False and propagate $\neg a$ by BCP
<i>x</i> < 4	\Rightarrow Check the status of literals in the given formulas
xy > 4	$(xy > 4 \land yz^2 \le 4) \mapsto (\text{True} \land \text{True}),$
$yz^2 \le 4$	$(\neg a \lor x < -2) \mapsto (\text{True} \lor \text{False}),$
$\neg a \lor x < -2$	$(y > 0 \lor x \ z + y = 5) \mapsto (\text{True }\lor \text{Unknown}),$ $(a \lor x^2 \ge 4 \lor y > 5) \mapsto (\text{False} \lor \text{Unknown} \lor \text{Unknown}).$
$y > 0 \lor x^2 z + y = 3$	So, the formula after simplification is:
$a \lor x^2 \ge 4 \lor y > 5$	$\underbrace{(x^2 \ge 4 \lor y > 5)}_{\bullet} \land \underbrace{(\neg a \land x \in (1,4) \land y \in (1,\infty) \land z \in (-2,2))}_{\bullet} \land \underbrace{(xy > 4 \land yz^2 \le 4)}_{\bullet}$
	Reduced Clauses Feasible Domain of Variables Propagated Literals

- Introduction
- Dynamic Variable-level Partitioning
- Experiments & Summary

Evaluation

Comparison to Sequential Solving in Arithmetic Theories Benchmarks

		QF_LR	A(1753)	8)	QF_LIA(13226)					
	SAT	UNSAT	Failed	PAR-2	Improve	\mathbf{SAT}	UNSAT	Failed	PAR-2	Improve
$\overline{\text{CVC5}(S)}$	958	685	110	354714	0%	7046	3212	2968	7562277	0%
CVC5(AP-p8)	980	689	84	287256	19.02%	7321	3252	2653	6791509	10.19%
CVC5(AP-p16)	980	689	84	281524	20.63%	7350	3274	2602	6678936	11.68%
CVC5(AP-p32)	982	690	81	275957	22.20%	7365	3285	2576	6603235	12.68%
OpenSMT2(S)	991	700	62	173971	0%	7985	4645	596	1994585	0%
OpenSMT2(AP-p8)	1008	701	44	132925	23.59%	8116	4660	450	1629696	18.29%
OpenSMT2(AP-p16)	1008	701	44	133043	23.53%	8138	4663	425	1555190	22.03%
OpenSMT2(AP-p32)	1009	701	43	127489	26.72%	8160	4665	401	1489780	25.31%
Z3(S)	966	680	107	316097	0%	7862	3903	1461	4025347	0%
Z3(AP-p8)	995	683	75	235645	25.45%	8055	4152	1019	3031732	24.68%
Z3(AP-p16)	996	683	74	231738	26.69%	8066	4157	1003	2983526	25.88%
Z3(AP-p32)	998	684	71	225268	28.73%	8076	4160	990	2945091	26.84%

		QF_NR	A(1213)	34)		QF.				
	SAT	UNSAT	Failed	PAR-2	Improve	SAT	UNSAT	Failed	PAR-2	Improve
CVC5(S)	5485	5811	838	2100561	0%	9460	4803	11095	27485835	0%
CVC5(AP-p8)	5709	5864	561	1425236	32.15%	13030	5504	6824	17250199	37.24%
CVC5(AP-p16)	5731	5864	539	1372485	34.66%	13045	5513	6800	17186305	37.47%
CVC5(AP-p32)	5743	5864	527	1343006	36.06%	13691	5588	6079	15346228	44.17%
Z3(S)	5626	5375	1133	2770153	0%	13779	5836	5743	14636656	0%
Z3(AP-p8)	5744	5686	704	1741660	37.13%	14191	6785	4382	11225626	23.30%
Z3(AP-p16)	5766	5705	663	1637352	40.89%	14193	6789	4376	11206526	23.44%
Z3(AP-p32)	5789	5712	633	1561862	43.62%	14320	6884	4154	10610746	27.51%

Summary (with 8 Cores) Based on PAR-2 score							
Theory	#Instance	Speed Up					
QF_LRA	1753	22.4%					
QF_LIA	13226	15.7%					
QF_NRA	12134	35.0%					
QF_NIA	25358	32.4%					

Our method with 8 cores solves 1211 additional instances (out of 6247 previously unsolved) that any single solver could not solve without our partitioner. 33

Evaluation

Comparison to state-of-the-art partitioning strategy.

		QF_LI	RA(1753)	3)	QF_LIA(13226)				
	SAT	UNSAT	Solved	PAR-2	SAT	UNSAT	Solved	PAR-2	
$\overline{\text{CVC5}(\text{p8})}$	964	677	1641	347087	7288	3199	10487	7004216	
CVC5(AP-p8)	980	689	1669	287256	7321	3252	10573	6791509	
OpenSMT2(p8)	998	701	1699	147360	8169	4698	12867	1384618	
OpenSMT2(AP-p8)	1008	701	$\boldsymbol{1709}$	132925	8116	4660	12776	1629696	
CVC5(p16)	965	676	1641	346435	7316	3225	10541	6895797	
CVC5(AP-p16)	980	689	1669	281524	7350	$\boldsymbol{3274}$	10624	6678936	
OpenSMT2(p16)	997	698	1695	157708	8097	4623	12720	1778020	
OpenSMT2(AP-p16)	1008	701	1709	133043	8138	4663	12801	1555190	
		QF_NF	RA(1213)	54)	QF_NIA(25358)				
	SAT	UNSAT	Solved	PAR-2	SAT	UNSAT	Solved	PAR-2	
$\overline{\text{CVC5}(\text{p8})}$	5559	5798	11357	1948280	12503	4480	16983	20716252	
CVC5(AP-p8)	5709	${\bf 5864}$	11573	1425236	13030	$\boldsymbol{5504}$	18534	17250199	
CVC5(p16)	5575	5796	11371	1920929	12821	4405	17226	20123111	
CVC5(AP-p16)	5731	${\bf 5864}$	11595	1372485	13045	5513	18558	17186305	

Run time comparison in pure-conjunction instances

Summary

AriParti in GitHub

Parallel Version: https://github.com/shaowei-cai-group/AriParti Distributed Version in SMT-COMP 2024: ~/Z3-Parti-Z3pp-at-SMT-COMP-2024

Key ideas:

- Variable-level partition
- BICP for simplification
- Flexible dynamic

Experimental Results:

- After being applied to the cutting-edge solvers, we solved 3495 more instances on average, and the solving speed improved by about 30%.
- Compared with the SOTA partitioning strategies, it has significantly improved in nonlinear theories and pure-conjunction type instances.

Distributed SMT Solving Based on Dynamic Variable-level Partitioning

Mengyu Zhao, Shaowei Cai*, and Yuhang Qian

Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

{zhaomy, caisw, qianyh}@ios.ac.cn

* Corresponding author