Local Search and Its Application Iin
CDCL/CDCL(T) Solvers for SAT/SMT
Shaowei Cai

Institute of Software, Chinese Academy of Sciences

FMCAD 2023
October 23 to 27, 2023,

Ames, lowa, USA

SAT, SMT

SAT: Propositional Satisfiability
Engines in formal Tools:

(AVB)/\(—|CV—|B)/\(—|CVA)
» EDA, program analysis,

SMT: Satisfiability Modulo Theories software verification ...
a(b+2 = ¢) A (A[3] # A[c-b+1] v s =10)

To solve SAT and SMT:
» conflict-driven clause learning (CDCL)

 |ocal search

2/83

Outline

 Local Search for SAT
« Basis and Early Methods
« Modern Local Search Solvers

» Local Search for SMT
* Local Search for Bit Vectors //slides in this part provided by Aina Niemetz

 Local Search for Arithmetic Theories

* Improving CDCL/CDCL(T) solvers by Local Search

3/83

Outline

e Local Search for SAT
» Basis and Early Methods
« Modern Local Search Solvers

 Local Search for SMT

» Local Search for Bit Vectors //slides in this part provided by Aina Niemetz

 Local Search for Arithmetic Theories

* Improving CDCL/CDCL(T) solvers by Local Search

4/83

SAT

Definition Boolean Satisfiability/Propositional Satisfiability/SAT
Given a propositional formula ¢, test whether there is an assignment to the
variables that makes o true.

« Boolean variables: x4, x5, ...
A literal is a Boolean variable x (positive literal) or its negation —x (negative literal)
« A clause is a disjunction (V) of literals

X, V X3,

X1 Vax3Vx, ({—xq, nx3, x4})

« A Conjunctive Normal Form (CNF) formula is a conjunction (A) of clauses.
e.0., 9 = (x1V-axy)A (X VX3)A(xo V=axg) A(mxy VX3 Vxy)

5/83

Local Search

F={—x1 V x5, X1 V Xy, X, V X3, X5V X3, =X V Xy V 11X3}

Assignment Cost falsified Clauses
(X1, X2, X3)

000 2 (x1 Vx3), (x5 V x3)
001 1 (x1 V x3)
010 0 None V
011 1 (mx5 V —1x3)
100 1 (x, V x3)
101 1 (mxq VX, V—x3)
110 1 (—xq V —xy)
111 2 (mx1 V xy), (Ax, V —x3)

a CNF with 3 variables

110 11
/
|
010" | o011
:
;..‘1' '0"'7 101
‘-l"

Search space:
all complete assignments

Organized by neighboring relation

O Local search walks in the search space,
trying to visit a satisfying assignment
--- iIncomplete, cannot prove unsatisfiability.

6/83

Local Search

search space S (consists of all candidate solutions)

SAT: set of all complete truth assignments to variables
solutionsetS'c S

SAT: models of given formula
neighbourhood relation N€ S x S

SAT: Hamming distance 1

objective functionf: S — R+ O Local search views
SAT: number of falsified clauses under given assignment ?ﬁ)EIana minimization

evaluation functiong : S —- R
cost(a)=number of falsified clauses under given assignment

We can have other cost functions...

7/83

Operator

Neighboring relation—> defined by operators
An operator defines how to modify the candidate solution in one step.

(e.g., Hamming distance 1 neighboring relation €<-> operator of flipping one variable)

a o(oft1|jo0}j1j0|j0|0|1(1(0|1]0(|1]0

Flip operator for SAT
When an operator is instantiated with a variable (and a value), we obtain an operation.

(e.q., flip(xqy))

8/83

Scoring Function

We need an evaluation function to guide the search. c
xample.

F:{_le \ —1X2, X1 \ X2, X3 \Y —1X3, XZV X3, X1 \Y X2 \ _ng}

i Assignment Cost falsified Clauses
% . (%1, X2, Xx3)
011 1 (X2 V —x3)
111 2 (%1 V 2x3), (%2 V —x3)
Instead of calculating cost function for candidate 001 1 (21 V x3)
solutions, we calculate scoring function for 010 0 None

operations.
score(x,) = cost(011) — cost(111) = —1
score(x,) = cost(011) — cost(001) =0
score(x3) = cost(011) — cost(010) =1

(We have efficient method for calculating scores.)

A common function: score(x) = cost(a) — cost(a’)

9/83

Score Computation

Cache based computation N(x) ={variables share clauses with x}
« |nitially calculate score(x) for each variable
« When flip a variable x, only score for those in N(x) should be updated
» Go through all clauses where x appears, need to update scores in 4 cases

« 2-satisfied - 1 satisfied

« 1-satisfied - falsified

- falsified - 1-satisfied

« 1-satisfied - 2-satisfied

Non-cache computation

« Simply compute score according to definition, by going through the x’s clauses and compute
the contribution (either +1 or -1) of each clause

10/83

More Scoring Functions

Mainly consider the objective function

* make(x): the number of currently falsified clauses that would become satisfied by flipping x.
* break(x): the number of currently satisfied clauses that would become falsified by flipping x.
 |tis easy to see that score(x) = make(x)-break(x).

« score(x)B

o A-break(x)

May also consider the algorithm’s behavior
« age(x): the number of steps since the last time x was flipped.

« score(x)+age(x)/T

Dynamic Scoring functions

« Change the parameters or the expression of the scoring function during the search

11/83

Local Search for SAT

Design of local search SAT algorithms

Algorithm : Local Search Framework for SAT Scoring
begin functions

(v <— a complete assignment:;

. : " O
while not reach terminal condition do
if o satisfies F' then return o;
pick a variable x; /[PickVar o o
« <— o with 2 flipped;

e initialization

= N N S e

@)

Search

« Scoring functions
strategies

7 return “Solution not found™;

« Search heuristics

12/83

GSAT

GSAT [SelmanLevesqueMitchell, AAAI'92]

S := arandom complete assignment;
while (Itermination condition)

If (S is a solution) return S;

X := a variable with the best score;

S := S with x flipped,;

return S;

Tested on hard random 3-SAT, and instances encoded from graph coloring and N-queens,
showing promising results at that time.

13/83

Random Walk [Papadimitriou,FOCS’91] Start with any truth assignment. While there are

Focus on complexity analysis unsatisfied clauses, pick one and flip a random literal
in it.

WalkSAT[SelmanKautzCohen,AAAI'94]

performs very well on random 3-SAT,
tested on up to half million variables
If 3 variable with 0-break [KrOCSabharwalSeIman,SAT’lO]

C := a random falsified clause

X := a 0-break variable, breaking ties randomly;

else

with probability p
X := a random variable in C;
otherwise

X := a variable with the smallest break, randomly;

14/83

Local search algorithms for SAT mainly fall into two types:
« focused random walk (also called focused local search):

always picks the flip variable from an unsatisfied clause. (conflict driven)

« two-mode local search

switches between global mode (usually for intensification) and focused mode (usually
for diversification).

15/83

Focused Random Walk

Novelty Novelty-PickVar
Select a random unsatisfied clause;
If the best-score variable is not most recently flipped in the clause

[McAllesterSelmanKautz,

AAAIST] X:=the best-score variable;
else

with probability p, x:=the second-best-score variable;

with probability 1-p, x:=the best-score variable;
Novelty+ With a fixed probability wp, choose a random variable from the clause; //PAC
[Hoos,AAAI'99] The remaining case, do as Novelty;
Novelty++ With a fixed probability dp, choose the oldest variable from the clause;
[LiHuang,SAT’05] The remaining case, do as Novelty;
AdaptiveNovelty+ adapt wp during the search (initially wp:=0)
[Hoos,AAAI'02] * if no improvement in a period of time, wp:=wp+(1-wp)-6

« if improvement is observed, wp:=wp-wp -6 /2

16/83

Two mode Local Search

GWSAT [SelmanKautz, IJCAI'93]

S := arandom complete assignment;
while (termination condition)

If (S Is a solution) return S;

with probability p

X := a variable in a random unsatisfied clause
otherwise

X := a variable with the best score

S := S with x flipped;

return S;

17/83

Two mode Local Search

G2WSAT G2WSAT-PickVar
If 3 promising decreasing variables
X:=the best-score promising variable;
else
X:= the variable picked by Novelty++ heuristic;

promising decreasing: becomes decreasing (i.e., positive score) due to
the flip of other variables

[LiHuang,SAT 05]

gNovelty+ _

[PhamThorntonGretton use AdaptNovelty+ in the focused mode

Sattar, AAI'07] use clause weighting

Sparrow use a probability-based heuristic in focused mode

[BalintFrohlich,SAT’10] use clause weighting

18/83

Clause Weighting

Clause weighting serve as a form of diversification in local search.

e Associate each clause with a weight, and use weighted cost function:

wcost(F,a) = 2eeveFayW(C)

then,
score(x) = wcost(F,a) — wcost(F,a')

e Date back to the Breakout method for SAT [Morris,AAAI'93]

Increase the weight of each falsified clause by one when reaching local optima.

O The basic idea of using weight penalties, or Lagrangian multipliers, to solve discrete optimization
problems was developed in the operations research (OR) community much earlier. [Everett, OR’63]

19/83

Clause Weighting

Clause weighting schemes usually have a mechanism to decrease clause weights.

» Decrease weights by subtraction
» Discrete Lagrangian method (DLM) [WuWah,AAAI'00] , PAWS [Thorton et al,JAR’05]:
decreases clause weights by a constant amount after a fixed number of increases.
« Probabilistic PAWS: with a probability, decrease the weights of clauses with large weights
 Pull to the mean value

* w(e)=pw(c)+ (1 —pw or w(c)=pw(c)+ (1—pIwgy
SDF[SchuurmansSouthey AlJ'01], ESG [SchuurmansSoutheyHolte IJCAI'01], SAPS[HutterTompkinsHoos,CP’02]

« DDWEF: transfer weights from neighbouring satisfied clauses to falsified ones. [Ishtaiwi et.al,CP’05]

O Clause weighting has been the most significant line in recent progress of local search for MaxSAT,
including SATLike [AAAI'20] NuWLS [AAAI'23] // need to distinguish hard and soft clauses

20/83

Outline

e Local Search for SAT
« Basis and Early Methods
 Modern Local Search Solvers

 Local Search for SMT

» Local Search for Bit Vectors //slides in this part provided by Aina Niemetz

 Local Search for Arithmetic Theories

* Improving CDCL/CDCL(T) solvers by Local Search

21/83

Efficient Local Search on Structured Formulas

After 2010, more attention on evaluating local search solvers on structured instances,
Including crafted and industrial instances, with promising results.

This happens with new LS solvers: Sattime, probSAT, CCASat/CCAnr...
« Sattime ranked 4% in the crafted track, the top 3 were portfolios.
« complementary with CDCL solvers on crafted benchmarks. (top 3 solvers are CDCL+LS in SC’14)

« CCAnNr (or its variant) shows good performance on instances from test generation, spectrum
allocation, and math problems [Brown et al, AAAI'16;Frohlich et al, AAAI'15;Cai et al, CP’21]

* local search solver for SAT instances from matrix multiplication [HeuleKauersSeidl,SAT’19]

O No random track in SAT Competition after 2017.

22/83

Two Modern Local Search SAT Solvers

CCAnr (two-mode local search) probSAT (focused local search)
developed: Cal, 2013 developed: Balint, 2012
[AlJ'13,SAT’15] [SAT’ 12, SAT 14]

« configuration checking * probability distribution using break
« second level score » second-/multi-level break

* clause weighting

23/83

Second Level Scoring Functions

Example. Given an assignment {x; =1, x, =1, x5 =0, x, =1, x5 =1}

Clle VvV X9 \ —1X3 VvV X4 VvV —1Xs5, 02:x1 VvV —1X9 \ X3 VvV X4 VvV —1Xg

Both clauses are satisfied.

But c1 is a 4-satised clause, while ¢2 is 1-satised. O Satistaction degree

1-satised clauses are the most endangered satisfied clauses.

—>encourage 1-satisfied clauses change to 2-satisfied.

Second Level Scoring Functions [CaiSu, AlJ'13, AAAI'13]
* make,(X) is the number of 1-satifised clauses - 2-satisfied by flipping x.
« break,(Xx) is the number of 2-satifised clauses - 1-satisfied by flipping x.
* score,(x) = make,(x) — break,(x)

* First used in CCASat (with name ‘subscore’), formally defined in WalkSATIm,
also used in CScoreSAT, probSAT, Sattime2014r...

24/83

Second Level Scoring Functions

Proposition For a random 3-SAT formula F(n,m), under any satisfying
assignment a to F, the number of 1-satised clauses is more than m/2.
[CaiSu,AlJ’13]

This proposition says, second level functions are not suitable for 3-SAT
formulas, as at least half clauses are 1-satisfied under any solution.

Generally, this indicates it is likely that second level functions are not helpful

for formulas with short clauses.

In fact, all local search solvers using second/multi-level functions only use
them for 5- and 7-SAT, while the experiment studies show that it is not good
for 3-SAT.

25/83

Configuration Checking (CC)

Definition the configuration of a variable x is a vector C, consisting of truth
value of all variables in N(x) under current assignment « (i.e., C;, = a|y(x))-
[AAAI'12,AlJ13]

N (x) ={variables share clauses with x}

0
O.K:l .\<: X: \/ :>< O CC aims to address cycling
— @ roblem, i.e., revisitin
¢’ ' e probt . J

candidate solutions
/\ O We can have different
definitions of CC

A simple CC for SAT: if the configuration of x has not changed
since x's last flip, then it is forbidden to flip.
26/83

Configuration Checking

Observation when a variable is flipped, the configuration of all its
neighboring variables has changed.

Efficient implementation of CC:

 Auxiliary data structure --- CC array
« CC[x] = 1 means the configuration of x has changed since x's last flip;

* CC[x] = 0 on the contrary.

« Maintain the CC array
« for each variable x, CC[x] is initialized as 1.

» when flipping X, CC[X] is reset to 0, and for each y € N(x), CCJy] is set to 1.

27/83

When to use (or not use) CC?

The effectiveness of the typical CC is related to the neighborhood of variables.

Proposition. For a uniform random k-SAT formula F, its the number of variables

n and the clause-variable ratio r, if In(n — 1) < k(::i)r

expected to have a complete neighborhood, and thus the CC strategy degrades
to the trivial case that forbids only one variable.

, then each variable is

3-SAT | 4-5AT 5-SAT 6-SAT 7-SAT O Generally, CC is effective
(r=42)| (r=9.0)| (r=20) | (r=40) | (r =85) for formulas with short
11.652 32.348 90.093 223.095 564.595 clauses.
k(k—1)r

fm)=Inn-1) - is @ monotonic increasing with n (n > 1).

f(n) < 0 (thus cc fails) iff n < |n*|, where n* is a number s.t.f(n*) = 0.
This table list the n* value near phase transition for k-SAT.

28/83

CCASat and CCAnNr

CCA-PickVar

If 3 CCD variables //configuration checking
X:=the best-score CCD variable;
else if 3 SD variables // aspiration

i D:= > W
x:=the best-score SD variable; SD:=ix|score(x) > w}

CCD:={x|score(x)>0 and CC[x]=1}.

else

Select a random unsatisfied clause;
X:=pick a variable from the clause

S N

X:= oldest variable from the clause

X:= best variable from the clause

CCAnr

e good at structured instances
not using second level score

CCASat (won random track of SAT Challenge 2012)

« Variants ranked top 3 in random SAT track in
following SCs.

using second level score for k-SAT

29/83

PprobSAT and YalSAT

ProbSAT (won random SAT track of SC’13)

« Choose a random unsatisfied clause C:

* Pick a variable from C according to probability Zf(—);)(z) O 3-SAT: only use break(x)
. reatitn = O Two scenarios for 5-SAT and 7-SAT
flx) = cb R AS HCbl use break(x) and break,(x)

« use all break;(x) for L € {1,2,...,k}
F(x) = (1+ break(x))™* > f(x) = 1_[(1 + break,)=<
l

Original probSAT 2nd level and multi-level break
[Balint Schéning,SAT’12] [BalintSchoningFrohlichBiere, SAT’14]

YalSAT (won random SAT track of SC'17) O Besides the traditional random k-SAT

[Biere,SC-Proc’14] instances, random SAT track of SC'17
also includes random instances of a

« implements several variants of probSAT model called sgen.

« these variants are scheduled by Luby restarts.
30/83

Improving Local Search via Machine Learning

NLocalSAT[Zhang et,al.,IJCAI'20]:

using Gated Graph Convolutional Network to predict solution, used as initial assignment

Ol L Ly Led Ly Ly f Ly Ly

' @e) (8e) (50 [E]i oojoojanan

A el B R RN T

, . .

1 el 1 .

| @9 (@9 : an

l\- C1 C2 ,’ C1 Cz

N y
(X VX)) A (X V xy) 1

Input Solving SAT

Output [x1 : False, xz: True]

Solver -—: xy: False, xz: True '« -

Xewyos

T
]
I
I
I
1
I
I
I
]
I
I
I
I
I
I

5. lrue

Solver Predefined(165) Uniform(90) Total(255)
CCAnr 107.3 £1.2 18.0+0.8 125.3+ 1.2
CCAnr with NLocalSAT 165.0 = 0.0 127+£0.9 177.7£0.9
Sparrow 126.7 £ 0.5 23.7x1.7 150.3+1.2
Sparrow with NLocalSAT 165.0 0.0 31.0+0.8 196.0+ 0.8
CPSparrow 128.0 £ 0.8 270+ 1.6 155.0+ 14
CPSparrow with NLocalSAT 165.0 = 0.0 32008 197.0x0.8
YalSAT 75.0£ 0.0 495+ 1.5 1245+ 1.5
YalSAT with NLocalSAT 165.0 £0.0 37.34+£09 202.3+09
probSAT 75.7£0.5 51.0+£0.0 126.7+ 0.5
probSAT with NLocalSAT 165.0 = 0.0 40.7+£1.2 205.7+1.2
Sparrow2Riss 165 23 188
gluHack 165 0 165
MapleLCMDistBT 165 0 165

improve local search solvers, tested on uniform random
instances and those generated by Balyo’s model in SC'18

31/83

Improving Local Search via Machine Learning

PbO-CCSAT [LuoHoosCai,PPSN’20]

CC-based local search framework

larger design space - automatic configuration by SMAC [HutterHoosBrown,LION’11]

Algorithm 2: Variable selection heuristic pickVarHeur of PbO-CCSAT

Output: variable v

1. PAC property selection

1 if performRW then
2 with probr- bility rw_probdo 7
3 |_ returnjv < se/VarRWHeur().

if performProbDiv then
with probability div_prob do

~N W b

/.

L l(- + selUnsatClause():

g . .1
i re Ill'l‘l + selVarFromUnsatClause(c). s
8 if performCSCC then

9 if CSDvars # @ then
10 I_ relurllll' + selVarFromSet(CSDvars);

11 if NVDvars # () then

12 I_ returnll' + selVarFromSet(NV Duvars),
13 if performAspiration then

14 L if SDvars # then /

|_ returnlzv «— selVarme.MSDvars):

16 if performCWS then

17 |_ activate clause we igyéleme [clauseWgfehtSchemef); P/'

18] ¢ « se,
19 returnfv < selVarFromUnsatClause(c);

e

Random selection
Selection based on clause weight

L O i I s

Random selection

Selection based on age
Selection based on score
Selection based on hscore
Selection based on hscore2
Novelty-like selection heuristic
Sparrow-like selection heuristc

P RIS

Random selection
Selection based on age
Selection based on hscore
Selection based on hscore2

=

SWT clause weighting scheme
PAWS clause weighting scheme

O Improve LS on application
benchmarks

O Better than CDCL solvers in
some problems

32/83

Outline

 Local Search for SAT
« Basis and Early Methods
e Modern Local Search Solvers

 Local Search for SMT

» Local Search for Bit Vectors //slides in this part provided by Aina Niemetz

 Local Search for Arithmetic Theories

* Improving CDCL/CDCL(T) solvers by Local Search

33/83

SMT

Satisfiability Modulo Theories

L
-9+ 9 890
© o9

(X1 —x S 13V f(xp) # f(x3)) AN (By = x4 > x5) A\ =B,

34/83

SMT

Example:
¢ — (xl_xz S 13\/x2 ::txg)/\(Bl _>X4, >x5)/_IBZ

Propositional Skeleton PSg=(b; V —b,) A (B; = b3) A =B,
bl:xl - xz S 13

bz:xZ = x3

b3: x4 > xc

35/83

SMT

 Fixed Sized Bit vectors (BV)
(x <<001)2s 000 A x <u 100 A (X + 010) mod 011 =x + 001

« Linear integer/real arithmetic (LIA/LRA)
(x; —x, <13Vx, #x3) AN(By = x4 > xc) A B,

« Nonlinear integer/real arithmetic (NIA/NRA)
(B{Vxixy <2)AB,V3x3x, +4x, +5xs =12V x, —x3 <3)

36/83

Local Search at Boolean Skeleton

WalkSMT [Griggio,Phan,Sebastiani, Tomasi FroCos 2011]

Combine WalkSAT and MathSAT, for LRA

« WalkSAT is used to solve the Boolean skeleton of the SMT formula,

 the conjunction of the literals in the solution u is sent to the theory solver to check.

» Learn lemmas: if u is inconsistent, sample some of the literals to check consistency, if
they are inconsistent, we learn a lemma

Experiment results:

« SMTLIB: “globally MATHSAT4 performs much better than WALKSMT, often by orders of
magnitude.”

 Random instances: “a very small difference ”

37/83

Local Search for Bit Vector

(&)

BV-SLS [FrohlichBiereWintersteigerHamadi,AAAI'15] in Z3,
Boolector A

* Represent formula as a directed acyclic graph (DAG) with _ (it
(possibly) multiple roots t

« Use single bit operators

in) 21| | 9Bm| | X | | Y
Example. e Single Bit Flips: e Increment
¢ = @ * Vi = @ ._
, o vz) := 0000001 ° V) == 0000001
0010101 1011101 ° V7 += 0000010 * Decrement
o vpz7) := 0000100 o vy := 1111111
o vz := 0001000
Candidate: vz := 0000000 (initial) o vjz) := 0010000 e Bit-Wise Negation
O V[T] . — D].OODDO @] V[T] — 1111111
O

V7] := 1000000

38/83

Local Search for Bit Vector

« A function score to evaluate each possible assignment obtained by each operation.
« Recursively defined, compute via bottom-up way, i.e., starting from the inputs

and-expression
1
s(aAba) = 3 (s(a,a) + s(b, @)

s(m(aADb),a) = max(s(—a,a) + s(=b, @))
(Eifi'—1((1 Ab) =-aV —b)

Boolean literal

s(x,a) = a(x)
s(—x,a) = aa(x)

equality expression iInequality expression

) (1.0 if a(a) < a(b)
1.0 if a(a) = a(b) s(a<ba)=4

s(a=b,a) = 4 h(a(a), a(b)) ? c1 -(1 _ e (a(a) a{b})) otherwise
cy - (1 — ﬂ) otherwise n
(10) (1.0 if a(a) = a(b)

. if ala /

ot ba) if a(a) # a(b) s(la=b,a) =<) .(1 - oms (::r(a).,a-{b]l)) otherwise

k'D'.IJ otherwise. 1 n '

39/83

Local Search for Bit Vector

for: =1to oc

a = initialize(F) single bit operations
for j = 1 to maxSteps(i) /
V = selectCandidates(F a) e compute the score of each possible assignment

move = findBestMove(f,a, V) .

obtained by each bit operation,
 then choose the best one.

if move # none then o = update(a, move)
else « = randomize(a, V)

a random step

» If no improving operation was found, then perform

| [QF BV | SAGE2 |

Cl ighti] CCAnr 5409 64
ause weignhting. _ _ CCASat 4461 3
updated whenever no improving move probSAT 3816 10
Sparrow 3806 12

could be found W2 >5%2 1
PAWS 3331 143

YalSAT 3756 142

Z3 (Default) 7173 5821

BV-SLS 6172 3719

40/83

Path Propagation

Example.

¢ = 2TA1TTies) * Vigs) — 18446744073709551617 65

Candidate: vjg5) := 000000...000000 (initial)

Assume: no preprocessing (rewriting, simplification) extends BV'SI_—S [AAAI'15] by
path propagation
—+ 3bb837 moves, 21 restarts

— unable to determine (single) solution vigs; = 67280421310721 5 %\:ilf%egzﬁreine“:mh“(:hBiere’
15

o within a time limit of 1200 seconds
o on a 3.4GHz Intel Core i7-2600 machine

— solved within one single propagation move

41/83

Path Propagation

Path propagation (aka. backtracing)

* Force root r to assume its target value to be 1.
* propagate this information along a path towards the primary inputs, update assignment

« propagate this information along another path towards the primary inputs, update assignment

1 G
)
1(A
3
L= {ite)0
’ &
/ t
0010101 (*
L vim 21| | 93m| | X | | Y
10101001 0010101 1011101 0 0

— Move: vi7) := 0101001

42/83

Path Propagation

Example.

o = a N oG
1
0 (A
= “{ite) 0
0000000 (*
Vi7) 217 B | X Y
0000000 0010101 1011101 O 0

43/83

Path Propagation

Example.

© initial assignment

o = a N oG
1
0 (A
= {ite)O
0000000 (*
Vi7) 217 B | X Y
0000000 0010101 1011101 O 0

{WHIZZOOOOOOO,XH]ZZZO,yU]Z::O}

44/83

Path Propagation

Example.

(;fJE le'\sz'\C3

@ initial assignment

{Vm = 0000000, X1 = 0_, Yl = 0}

® force c; =1

©® choose path and propagate down

? Boolean A

— Justification-based selection

o 0 — 1: choose single controlling input

o else choose randomly

/ 1(A
1(= {ite)0
e
/ t
0010101 (*
VI7) 217 B3| | X Y

0101001 0010101 1011101 0

— Move: vz := 0101001

45/83

Path Propagation

Example.

To change the value of ‘ite’ node from 0 to 1,
we need to change the value of variable .

du

0000000 0010101 1011101 0 1

— Move: ym:zl

46/83

Path Propagation: How to Choose A Path

Definition An input to a node is controlling, if the node can not assume a given target
value as long as the value of the input does not change.

Example Bit-Level - controlling inputs

0-~1 l1-~0 0-~1 01 10

00 R R R A

How to extend a path?

For each node, prefer to pick to choose a controlling input, otherwise pick a random input

47/83

Path Propagation

Down Propagation of Assighments

e via inverse computation

e Restricted set of bit-vector operations

o Unary operations bvnot extract

o Binary operations = bvult bvshl bvshr bvadd
bvand bvmul bvudiv bvurem concat

e for some operations no well-defined inverse operation exists

—— produce non-unique values
—— via randomization of bits or bit-vectors

e.g.
’ .—\‘assume as fixed: b:= 1011

down propagated: selected path, inverse a:= 0X01
c = 0001 ¢

don't care

Path propagation (aka. backtracing)

Force root r to assume its target
value to be 1.

Iteratively propagate this information
along a path towards the primary
inputs.

48/83

Path Propagation

Down Propagation of Assignments (cntd.) Path propagation (aka. backtracing)

 Force root r to assume its target
value to be 1.

o] = ap oP by - lteratively propagate this information

along a path towards the primary

inputs.

e if no inverse found

— disregard b

— choose inverse value for a2 that matches assignment of ¢

it = @ A disregard b:= 1110

down propagated: selected path, choose a := 0001
c := 0001

O €[y = a[y op bvconsty,

— assignments of b and c¢ are conflicting
— no value for a found
—+ recover with regular SLS move

49/83

Path Propagation

force r to assume
target valuet =1

(on} a9

Y
0~1 0~ 1
single-rooted DAG | Vi X1 V2 X2
with root r
propagate t along
a path towards —|
the primary inputs Vi 4
(backtracing)
0‘1(!’) =0 O’z(r) =

l

initial assignment

o complete
o not satisfying

O prioritizes selecting controlling inputs,

T W

Vi —> X

Vi

ok(r) =0 w(r)=1

l

satisfying assignment

else choose randomly

50/83

Path Propagation

e TWO scenarios

e Propagation (Bprop) vs. LS moves (frw) with a ratio

e Propagation moves only

Implemented in Boolector: Bit blasting + focused random walk + path propagation

Solved [#] | Time [s]
Bb 14806 2623801
Bb+Bprop+frw (1s) 14844 2538616
Bb+Bprop+frw (2s) 14852 2535600
Bb+Bprop+frw (3s) 14858 2534900
Bb+Bprop+frw (4s) 14861 2538266
Bb+Bprop+frw (5s) 14862 2544488
Bb+Bprop+frw (6s) 14862 2551784
Bb+Bprop+frw (7s) 14862 2558002
Bb+Bprop+frw (8s) 14862 2565357
Bb+Bprop+frw (9s) 14862 2572600

Time limit: 1200 seconds, Memory limit: 7GB

+38
+46
+52
+55
+56
+56
+56
+56
+56

97.1%
96.9%
96.9%
97.1%
97.3%
97.6%
97.9%
98.1%
98.0%

51/83

Word Level Propagation

Definition An input to a node is controlling (essential), if the node can not assume a
given target value as long as the value of the input does not change.

Example Bit-Level - controlling inputs

0~1 1~~0 0~1 0~1 0~1 1~0
1 0 0 1 1 0 0 0 11 Lift propagation
from bit level to word level
Example Word-Level - essential inputs [NiemetzPreinerBiere, CAV’'16]
10 ~» 01 11 ~~ 10 00 ~+ 10 01 ~+ 10 00 ~~ 10 01 ~ 11

R QR e R

10 11 00 11 00 10 01 01 0l 01 0 1

52/83

Word Level Propagation

Boolector Configurations:

® Bit-blasting engine: Bb
winner of QF_BV main track of
SMT-COMP’'15

® Propagation-based: Pw

® Sequential portfolio: Bb+Pw
Bb with Pw as a preproc. step

Results:
Pw Bb Bb+Pw
time limit 1 sec 1200 sec 1200 sec
4+ solved 7632 14806 14866 | +60
total time 9106 2611840 2513348

Bb+Pw runtime [s]

100 1000

10

0.1

0.01

- 10x faster (1487)
- 100x faster (585)
1000x faster (270)

Bb runtime [s]

53/83

Outline

 Local Search for SAT
« Basis and Early Methods
e Modern Local Search Solvers

 Local Search for SMT

* Local Search for Bit Vectors //slides in this part provided by Aina Niemetz

* Local Search for Arithmetic Theories

* Improving CDCL/CDCL(T) solvers by Local Search

54/83

A Local Search Algorithm for Arithmetic Theories

LS-LIA = LocalSMT (LIA and NIA) [Cai,Li,Zhang, CAV’'22,TOCL'23]

N\

non_improve_steps > L X P;
Integer(Real) > Boolean O Top level of

Mode i Mode LocalSMT
non_improve_steps > L X Py

Initialization ——

P, , P; . the proportion of Boolean and integer literals to all literals in falsified clauses

.‘@’_ Consecutively performing X (Boolean or Integer) operations can help

4 \

< algorithm focus on the subformula with only X variables

55/83

Critical Move

The critical move operator, cm(x, £), assigns an integer variable x to the threshold value
making literal € true, where ¢ is a falsified literal containing x.

LIA: let A=), a;a(x;) —k
« forthe case ¢:);a;x; <k, cm(x;,?) makes a(x;) = [| % ﬂ for each x;

« forthe case ¢:);a;x; =k, cm(x;,?) increases a(x;) by — %, if a;|A

Example

given two literals [;:2b —a < =3 and [,: 5¢c — d + 3a = 5 and the assignment
fa=b=c=d =0}

 cm(a,ly) refersto assigning a to 3, cm(c, l,) assign c to 1.

« Note that there exists no cm(a,l,) since 3 {5

56/83

Critical Move

The critical move operator, cm(x, £), assigns an integer variable x to the threshold value
making literal ¢ true, where ¢ is a falsified literal containing x.

NIA: Suppose x has n different roots for };; aym;(x) =k, listedas r <r, < <1y,

for the case ¢:};a;m; <k,

cmya(x, £) = Ujes—{OP(x» Imin[T)'» 7”j+1])» op(x, Imax[rj»rjﬂ])}
for the case ¢:),;a;m; =k,

cmpya(x, €) = {op(x,1j)|1j is an integer root}

O For a variable, there may be more than one critical moves w.r.t. a literal

57/83

Critical Move

The critical move operator, cm(x, £), assigns an integer variable x to the threshold value
making literal ¢ true, where ¢ is a falsified literal containing x.

SubstltL_Jte all _varlables Solve feasible intervals D_etermln_e the Iargest_and_ smallest
but x with their values integer in each feasible interval

Example. literal I: —2bc?> +3ab +c < -3
current assignment {a=1,b=1,c=1,d = 1}. Y
solve

—2c*+c¢c+6<0
feasible intervals: (—oo, —1.5] U [2, o)
largest and smallest integer in these intervals: -2, 2. : :
- cmy4(c, 1) contains two operations: assigning ¢ to -2 T T e 1
and 2 respectively.

58/83

Two-level heuristic

To find a decreasing cm operation: whenever one exists, we need to scan all
cm operations on false literals.

Time
consuming!
4)
The set of cm operations D [0 Two-level heuristic
S<SD,S={cm(x,?)|? appears in at least one falsified clause} 1. Eff'C'?nCy _Of picking operation
\ y 2. Conflict driven

search for a decreasing cm operation from S

l if fal

search for decreasing cm operation from D\S

59/83

LocalSMT Algorithm

« LocalSMT switches between Boolean mode and integer mode

« Each mode is based on the “two-mode local search” (global step and focused
random walk)

Picking Operation in Integer Mode of LocalSMT
If 3 decreasing cm operation in falsified clauses

op:=the best-score cm operation; .
P P Two level heuristic

else if 3 decreasing cm operation in satisfied clauses

op:=the best-score cm operation;

else
update clause weights according to PAWS;
c:=select a random falsified clause;

op:=pick a cm operation from c with best dscore;

60/83

Score Based on Distance to Satisfaction

Distance to truth (dtt):

Given an assignment a and a literal #, the distance to truth of £ is

e Inequality literal }}; a;x; < k:its dtt(¢, @) = max{}.; a;a(x;) — k, 0}.

e Boolean or equality);; a;x; = k: dtt(f,a) = 0 if £ is true under a and 1 otherwise.

1

Distance to satisfaction (dts): Example.
Given an assignment « and a clause C, C=4Vi \(;li ?a(i; 19:2C 1:) (\)/}(b >2)V(c<-3)
dts(C,a) = r{ggl{dtt({)» a)} Then, dtt(¢,) = 1, dtt(£;) = 2, dtt(£3) = 3,

and dts(C) =1

Distance score (dscore)
For an operation op, dscore(op) = Y..cr(dts(c,a) — dts(c,a’))
where a, a’ denotes the assignment before and after performing op

61/83

LocalSMT on Integer Arithmetic Benchmarks

#inst MathSAT5 CVC5 Yices2 Z3 LocalSMT | Z3+LS
LIA no bool 6,670 6,442 6,242 5,994 6,385 6,478 6,236
LIA with bool 1,842 1,619 766 1,662 1,617 912 1,625
Total 8,012 8,061 7,008 7,656 8,002 7,390 8,161
IDL_no_bool 841 363 539 654 653 687 687
IDL_with_bool 770 514 586 658 665 319 661
Total 1,611 377 1,125 1,312 1,318 1,006 1,348
NIA without bool 16,439 10,497 7,935 9,157 11,806 12,132 12,946
NIA with bool 1,980 1,906 1,908 1,942 1,959 1,669 1,952
Total 18,419 12,403 9443 11,099 13,765 13,801 14,898

Instances without and with Boolean variables are denoted by “no_bool” and “with_bool” respectively.

Tested on SMTLIB benchmarks of LIA, IDL and NIA, cutoff=1200s

62/83

Local Search for Linear/Multi-linear Real Arithmetic

« LocalSMT(RA), supports linear and multi-linear real arithmetic

* e.g.xy+ 5yz — 2xyz < 100 (multi-linear)

Issue: infinite possible values for a variable

l

solution: interval-based operation
1. interval division
2. Consider a few options in a selected interval

O [Li,Cai,FMCAD’23]

63/83

Satisfying Interval

For a literal of linear/multi-linear constraint, when all variables but one (say x) is substituted
with their values, we can solve the constraint and get the satisfying interval of x

—>either x < ub or x > [b (for strict inequation, x < ub or x > lb)

For a clause with more than one literal, the satisfying interval of x is the union of its
satisfying intervals w.r.t. all literals it appears.

(1) (2)

v
v

(3) (4)

v
v

the whole R

64/83

Satisfying Interval

« Consider all falsified clauses, for a variable x, put all satisfying intervals
together:

(1)

O There is no case with crossing intervals.
Suppose they are derived from two clauses
g C,and C,, then at least one of them is
2) satisfied.

Example. C;: x =1, C,: x < 2, then
not matter what value x is assigned,
at least one of them is satisfied.

\ 4

(3)

\ 4

This is the general case

65/83

Equi-make Intervals

« Consider all falsified clauses, for a variable x, we obtain an interval division:

Example:
(3) F - C1 N\ CZ

=(a—b >4V 2a—-b=7V 2a—c< -5)
A(a—c= 2),

This is the general case assignment {a = b = ¢ = 0}, (;and C, falsified

for variable a:
* interval [3.5, ©) can satisfy 2 clauses;

For each of the resulting intervals: . both interval (—o, —2.5] and [2,3.5) can

Assigning x to any value in the interval have the satisfy 1 clause

same make value (making the same number of

falsified clauses become true). I\ D J : | |
->such an interval is called eugi-make interval. 4-3-2-10123 4

UB(x, Cy) LB(x,C,) LB(x,Cy)

66/83

Choosing an Operation from Equi-make Interval

 After choosing an equi-make interval, we need to choose a value v.

Four options

1) Threshold: [,U

2) Median: (1+U)/2

3) Largest/Smallest integer ininterval:z; > 1, Z, < U

4) For (g%) another option is %

—> obtain an operation op(x, v)

LocalSMT(LRA):
* based on the framework of LocalSMT
« global step: collect K such operations, pick the best-score one.

67/83

LocalSMT for LRA/MLRA

TABLE I: Results on instances from SMTLIB-LRA TABLE III: Results on instances from SMTLIB-MRA

#inst cveS Yices Z3 OpenSMT LocalSMT(RA)

#inst cveS Yices Z3 SMT-RAT LocalSMT(RA)

2017-Heizmann 8 4 3 4 4 7

21(]) | 9];ezsmt 5144 ? | ? 1 5;3 ?2 ?5 20170501-Heizmann 51 [0 4 0 17
cnee 20180501-Economics 28 28 28 28 28 28
DTP-Scheduli 91 9] 9] 91 91 91 |

LassoRamker = 271 232 265 256 262 240 2019-ezsmt 32 31 32 32 21 28
latendresse 16 9 12 1 10 0 20220314-Uncu 12 2 12 12 12 12
meti-tarski 338 338 338 338 338 338 LassoRanker 7312 124 19 0 297
miphb oo e N meti-tarski 43 423 43 423 403 423
" 108 108 108 108 108 108 UltimateAutomizer 48 34 39 46 18 48
™ 24 24 24 24 24 11 zankl 38 24 25 28 30 38
tropical-matrix 10 1 6 4 6 0

e e 3 3% x o Total 979 865 683 772 532 891
Total 1044 954 995 966 992 900

68/83

Local Search for Nonlinear Real Arithmetic

Extension of the above algorithm to nonlinear real arithmetic need to deal with
additional challenges:

1. Efficiency: while there are well-known algorithms for root isolation in higher-degree
polynomials, they are time consuming and should be used sparingly.

« Computation is especially slow when algebraic numbers are involved.

Example. for constraint x2 + y2 = 3, if x is assigned to 1, then y = ++/2.

2. Unlike linear equations, not all higher-degree polynomials have feasible solution for
each variable.

Additional improvements address the above issues, yielding a local search

method that is competitive with state-of-the-art complete algorithms.
69/83

Relaxation and Restoration of Equalities

A challenge: equality constraints (e.g. x? + y? = 3) may force assignment of variables
to irrational (algebraic) numbers, making computation very slow.

« We relax the equality constraints that force irrational assignments during most of
local search.

 After approximate solutions are found, these equalities are restored, and solved to

obtain an exact solution.
[WangZhanLiCai, VMCAI'24]

N N4 Y
approx. solution for

relax equality = == all constraints =»

i Ay solution solution
N I 2 2 _
x*+y*=3 g x2+y2<3+e¢ x2+y%2=3

70/83

Local Search for Nonlinear Real Arithmetic

Category ##inst 73 cved | Yices |Ours|Unique
20161105-Sturm-MBO 120 0 0 0 84 84
20161105-Sturm-MGC 2 2 0 0 0 0

20170501-Heizmann 60 3 1 0 6 5
20180501-Economics-Mulligan| 93 93 89 91 87 0
2019-ezsmt 61 54 51 52 18 0
20200911-Pine 237 235 201 235 | 224 0
20211101-Geogebra 112 109 91 99 100 0
20220314-Uncu 74 73 66 74 73 0
LassoRanker 351 155 304 122 | 284 15
UltimateAtomizer 48 41 34 39 26 2
hycomp 492 311 216 227 | 272 12
kissing 42 33 17 10 33 1
meti-tarski 4391 | 4391 | 4345 | 4369 |4356 0
zankl 133 70 61 58 99 26
Total 6216 | 5570 | 5476 | 5376 [5662| 145

local search for NRA, competitive with complete algorithms such as
MCSAT on the satisfiable instances QF NRA in SMT-LIB.

71/83

Outline

 Local Search for SAT
« Basis and Early Methods
e Modern Local Search Solvers

 Local Search for SMT

» Local Search for Bit Vectors //slides in this part provided by Aina Niemetz

 Local Search for Arithmetic Theories

* Improving CDCL/CDCL(T) solvers by Local Search

72/83

Challenge of Combining CDCL and Local Search

Ten Challenges in Propositional Reasoning and Search

Bart Selman, Henry Kautz, and David McAllester
AT&T Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974
{selman, kautz, dmac}@research.att.com
http:/mwww. research, att.com/~selman/challenge

Challenge 7. Demonstrate the successful combination of stochastic search and
systematic search techniques, by the creation of a new algorithm that outperforms
the best previous examples of both approaches.

[Bart Selman, Henry Kautz and David McAllester, AAAI 1997]

73/83

Challenge of Combining CDCL and Local Search

» Local search as main body
« hybridGM (SAT 2009) , SATHYS (LPAR 2010)

 GapSAT: use CDCL as preprocessor before local search (SAT 2020)
« Use resolution in local search (AAAI 1996, AAAI 2005)

« DPLL/CDCL as main body

« HINOTOS: local search finds subformulas for CDCL to solve (SAT 2008)
« WalkSatz: calls WalkSAT at each node of a DPLL solver Satz (CP 2002)

« CaDiCalL and Kissat: a local search solver is called when the solver resets the saved phases and is
used only once immediately after the local search process (2019)

« Sequential portfolio

« Sparrow2Riss, CCAnr+glucose, SGSeq

74/83

CDCL Solver Overview

CDCL solver
» Analyze-Conflict : non-chronological backtracking + clause learning + vivification

« Decide : Branching strategy and phasing strategy

—»{ DECIDE j 2

(67

Y

4{BACKTRAC

Y

BCP conflict

all assigned

K},

bl >

> SAT

0

ANALYZE-
CONFLICT

UNSAT
bl <0

Clause learning
Clause management
Lazy data structures
Restarting

Branching

Phasing

Mode Switching

75/83

CDCL Solver Overview

CDCL solver
» Analyze-Conflict : non-chronological backtracking + clause learning + vivification

» Decide : Branching strategy and phasing strategy - can be improved by local search

—»{ DECIDE J =

(67

Y

4{BACKTRAC

Y

BCP conflict

all assigned

K},

bl >

> SAT

0

ANALYZE-
CONFLICT

UNSAT
bl <0

Clause learning
Clause management
Lazy data structures
Restarting

Branching

Phasing

Mode Switching

76/83

Deep Cooperation of CDCL and Local Search

CDCL focuses on a local space in a certain period [Cai,Zhang, SAT '21] (best paper).
—> Better to integrate reasoning techniques _ _ o
Local search walks in the whole search space A short history of this work and similar
P works independently by Biere is described

—>Better at sampling in [Cai,Zhang,Fleury,Biere, JAIR *22]

0 -

0 How to create a full initial
assignment?

Relaxed CDCL: Relax CDCL and complete the partial

Plug LS into a CDCL solver) : -
\ Unknown: assignment by alternating decisions and
| Contime CDCL propagations while ignoring all conflicts

1 R - BCP when possible
— « Pick a random unassigned variable,
SAT assign it with phase saving heuristic

\
return SAT

77/83

Improve Branching Heuristics via Local Search

CDCL is powerful owing largely to the utilization of conflict information
CDCL solvers prefer the variable which may cause conflicts faster (e.g. VSIDS)

Can local search information be used to enhance branching heuristics?

Branching with conflict frequency in local search:

« calculate the conflict frequency: frequency of occurring in falsified clauses

« multiply ls_confl_freq(x) with 100 , resulting Is_confl_num(x)

|

« improve VSIDS: for each variable x, its activity is increased by [s_confl_num(x)

« Improve LRB: for each variable x, the number of learnt clause during its period I is
increased by Is_confl_num(x).

78/83

Local Search Rephasing

Phase selection is an important component of a CDCL solver.
Most modern CDCL solvers utilize the phase saving heuristic [PipatsrisawatDarwiche, SAT'07]

Local search rephasing

» After each restart of CDCL, reset the saved phases of all variables with assignments by local search.

Phase Name

a _longest LS

a latest LS

a best LS

no change

Probability

20%

65%

5%

10%

a_longest_LS : the assignment of the local search procedure in which the initial

solution is extended from the longest branch during past CDCL search.
a_best_LS: the assignment with smallest cost among all local search

procedures.

a_latest_LS: the assignment of the latest local search procedure.

(the assignment of a local search procedure is the best found assignment)

79/83

Deep Cooperation of CDCL and Local Search

#SAT_bonus: solved by hybrid solver, but

solver #SAT #UIS\T(??(")[‘I ;afé(;llv)ed PAR2 [#SAT #UI;Tg;;[; ;#(i(())l(\)/)ed PAR2 bOth Orlg | nal CDCL and LS fal I .
glucose 4.2.1 83 101 184 5220.0] 95 95 190 fff:ﬁ - Py PP E——
glucose+rx 88 95 183 Zm 113 95 208 5 1 o ;:1:]1\,‘7: | IF'.:-\;[.}JI;UI:II;:- | #LS_call | LS_time(%) :F'l[“:']i‘;ll&]r; t?:n:' 'I.’)
glucose+rx+rp 112 o4 206 141 87 228 s | R - - IF= —
glucose+rx+rp+cf 110 94 204 4668.5| 150 91 241 4438.2 SC2019(351)
Maple-DL-v2.1 101 113 214 AS310] 133 102 235 453309 glucose-+rx i (s 24.28 | 21.66 1636 |5.52
Maple-DLA+rx 101 112 213 9 f 149 101 250 glucose+mx+rp 110 1133 7T |1846 1433 (486
Maple-DL+rx+rp 111 103 214 158 93 251 24 !I ghicose+rx+rpef | 17 s 2.7 22.19 15.3 5.81
Maple-DL+rx+rp+cf| 116 107 223 4139.4| 162 97 259 3027.6 Maple+rx 16 9 1386 |7.52 1.18 [2.03
Kissat_sat 115 114 229 3 167 98 265 f Maple-+rx+1p 11 15 0.63 10.43 6.54 2.36
Kissat_sat+cf 113 113 226 * 178 104 282 1 7 Mapletrx+rp+cf |6 16 12.59 749 8.50 2.12
CCAnr 13 N/A I3 96299| 56 N/A 56 8622.0 SC2014(400)
SC2019(400) SC2020(400) glucose +rx 50 1 1127 [2066 2062 [4.94
glucose_4.2.1 118 86 204 5437.6| 68 91 159 6494.6 glucose+rx+rp 47 31 9.46 18.4 21.66 5.64
glucose+rx 120 84 204 2 »H 93 88 181 @ glucose+rx+rp+cf | 53 36 1143 |20.28 2062 |6.64
glucose+rx+rp 134 85 219 130 85 215 Maple+rx 52 7 48 13.02 11.69 2.81
glucose+rx+rp+cf 140 85 225 4923.6| 134 87 221 4977.9 Maple+rx4rp 5% 13 184 15.21 87 3.4
Maple-DL-v2.1 143 97 240 4601.8| 86 104 190 5835.7 Maple+rx+rp+cf |51 18 6.52 12.53 15.62 2.04
Maple-DL+rx 146 93 239 9 * 121 105 226 6 7* SC2014(100)
Maple-DLA+rx+rp 155 94 249 142 99 241 pr—— T YRR T
Maple-DL+rx+rp+cf| 154 95 249 4377.4| 151 106 257 4171.1 glucosetrxirp |10 a8 268 |ser s 514
Kissat_sat 159 83 247 5 * 146 114 260 1 m ghicose+-rx+rpef [11 2% 2039 |11.82 1551 595
Kissat_sat+cf 162 90 252 157 113 270 Mogietox » s 56 T26m 501 1o
CCAnr 13 N/A 13 9678.3| 45 N/A 45 “=sITSs Magle frx-+1p N " o . 650 |83
Maple+rx+rp+cf |12 15 11.21 3.05 17.23 2.2
: sC202{(400)
Most winners of main track in recent competitions glucose+rx |9 1494|1175 1467 (1027
. . . . glucose+rx+rp 23 ar 13.17 10.79 94 9.71
use this method or similar idea. ghicose+rx+rphef |23 |37 1278|1167 1052 |10.28
Maple4rx 19 13 14.21 6.69 10.24 525
Maple+rx+rp 20 20 8.53 6.62 1.7 6.18
Maple +rx+rptcf |23 36 1095 [6.05 1417|542

80/83

Lift the Hybrid Method to SMT

CDCL(T): CDCL deals with the Assignments | o

skeleton, while theory solver CDCL eory
solve the conjunction of theory Solver « Solver
literals and learn lemmas.

Conflict Clauses

CDCL(T) guides local search:

When CDCL(T) finds a extract a subformula

satisfying assignment " F of the true literals
to Boolean skeleton

run local search at F

Example satisfying assignment to skeleton
{r1 > T,ps, » F,p, > F}

> (P VAp) A=(Bxx; < 2)

»

(D1 V p2) A (~(Bx1x; S 2) V (—x; — 3x4 < 0))
Boolean skeleton: (p; V =p;) A (—ps, V Ps,)

81/83

Lift the Hybrid Method to SMT

Local search enhances phasing heuristic:

word-level assignments assignments to used in phasing
by local search Boolean encoders heuristic of CDCL

Local search enhances ordering (branching) heuristic:

calculate the conflict frequency of each Boolean encoder (i.e., atomic formula),

add to VSIDS scoring function.

82/83

Integrate Local Search in Z3

/3++

* integrating local search solvers for arithmetic
theories into Z3.

« Cooperation between CDCL(T) and local search

Z++ in SMT-Comp 2022 and 2023
* Biggest Lead Model Validation
» Largest Contribution Model Validation

« Winning “single query” and “model validation”
tracks of LIA, NIA, NRA Divisions

SMT-COMP
2023

@ Q)

1.3-7.3++
sults achieved in the SM”

In honor of the re: SMT-competition

EST CONTRIBUTION (mv)

Divisions
ARITH(;.].T.L.24), QF NONLINEARREALARITH(;.|.T)

BIGGEST LEAD(

1l
QF _LINEARINTARITH(;.|.Tany), QF _NONLINEAR
Winner of the Logic (whe

he corresponding division)

re il d not unn
QF_IDL1)

i\ 2 41 :“Ql r‘k;’ e
| centhy ,[!/l'/ Mt P8~

83/83

Local Search and Its Application Iin
CDCL/CDCL(T) Solvers for SAT/SMT

Shaowel Cai

Institute of Software, Chinese Academy of Sciences

calsw@ios.ac.cn

mailto:caisw@ios.ac.cn

	默认节
	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63
	幻灯片 64
	幻灯片 65
	幻灯片 66
	幻灯片 67
	幻灯片 68
	幻灯片 69
	幻灯片 70
	幻灯片 71
	幻灯片 72
	幻灯片 73
	幻灯片 74
	幻灯片 75
	幻灯片 76
	幻灯片 77
	幻灯片 78
	幻灯片 79
	幻灯片 80
	幻灯片 81
	幻灯片 82
	幻灯片 83
	幻灯片 84

